logo N&B

M. Christophe MARTIN - Grenoble INP - SIMAP

Imprimer la page English Español
Rechercher
 
 
logo du groupe Grenoble INP transparent avec contour blanc
logo CNRS 
logo de l'UJF

Christophe Martin

Fonction : Directeur de Recherche CNRS

Coordonnées

Adresse : Grenoble-INP, Laboratoire SIMAP/GPM2, DU, BP 46 38402 Saint Martin d'Heres cedex, France
Tel : 0476826337
Mél : Christophe.Martin@grenoble-inp.fr
Christophe Martin
 
Curriculum Vitae

Research activities are focused on particulate materials for materials science applications. It spans from shaping (compaction, sintering) to the behaviour of materials elaborated from powders. Materials for energy applications (porous electrodes, nuclear pellets, MLCCs, thermoelectricity) represent typical applications. Discrete element simulations offer a natural and powerful tool for this research. A numerical tool, dp3D, specifically oriented toward materials science applications has been developed since 2001. Simulations are confronted to experimental observations, such as X-ray tomography.

Examples of application of the dp3D code are available here:

Selected publications:

Yan Z, Martin CL, Guillon O, Bouvard D. Effect of size and homogeneity of rigid inclusions on the sintering of composites. Scr. Mater. 2013;69:327–30.

Pizette P, Martin CL, Delette G, Sans F, Geneves T. Green strength of binder-free ceramics. J. Eur. Ceram. Soc. 2013;33:975–84.

Yan Z, Guillon O, Martin CL, Wang S, Lee C-S, Bouvard D. In-situ synchrotron x-ray transmission microscopy of the sintering of multilayers. Appl. Phys. Lett. 2013;102:223107. 

Jauffrès D, Martin CL, Lichtner A, Bordia RK. Simulation of the toughness of partially sintered ceramics with realistic microstructures. Acta Mater. 2012;60:4685–94. 

Jauffrès D, Martin CL, Lichtner A, Bordia RK. Simulation of the elastic properties of porous ceramics with realistic microstructure. Model. Simul. Mater. Sci. Eng.2012;20:45009.

Liu X, Martin CL, Delette G, Laurencin J, Bouvard D, Delahaye T. Microstructure of porous composite electrodes generated by the discrete element method. J. Power Sources. 2011;196:2046–54.

Liu X, Martin CL, Delette G, Bouvard D. Elasticity and strength of partially sintered ceramics. J. Mech. Phys. Solids. 2010;58:829–42.

Olmos L, Takahashi T, Bouvard D, Martin CL, Salvo L, Bellet D, et al. Analysing the sintering of heterogeneous powder structures by in situ microtomography. Philos. Mag. 2009;89:2949–65.

Martin CL, Bordia RK. The effect of a substrate on the sintering of constrained films. Acta Mater. 2009;57:549–58.

Martin CL, Bordia RK. Influence of adhesion and friction on the geometry of packings of spherical particles. Phys. Rev. E. 2008;77:31307.

Marmottant A, Salvo L, Martin CL, Mortensen A. Coordination measurements in compacted NaCl irregular powders using X-ray microtomography. J. Eur. Ceram. Soc. 2008;28:2441–9.

Schneider LCR, Martin CL, Bultel Y, Dessemond L, D.Bouvard. Percolation effects in functionally graded SOFC electrodes. Electrochim. Acta. 2007;52:3190–8.

Martin CL. Elasticity, fracture and yielding of cold compacted metal powders. J. Mech. Phys. Solids. 2004;52:1691–717.

Martin CL, Bouvard D. Study of the cold compaction of composite powders by the Discrete ElementMethod. Acta Mater. 2003;51:373–86.

Martin CL, Bouvard D, Shima S. Study of particle rearrangement during powder compaction by the Discrete Element Method. J. Mech. Phys. Solids. 2003;51:667–93.

 



 
SIMAP
Science et Ingénierie des MAtériaux et Procédés
1130 rue de la Piscine - BP 75 - F-38402 ST MARTIN D HERES CEDEX
Tél +33(0)4 76 82 65 17  Copyright Grenoble INP