Aller au menu Aller au contenu
Grenoble INP
Science et ingénierie des matériaux et des procédés

M. Christophe Martin

Christophe Martin
Directeur de Recherche CNRS

Coordonnées

Grenoble-INP, Laboratoire SIMAP/GPM2, DU, BP 46 38402 Saint Martin d'Heres cedex, France

  • Tél. : 0476826337

Envoyer un email

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentTélécharger au format PDFEnvoyer cette page par mail

Recherche

Research activities are focused on particulate materials for materials science applications. It spans from shaping (compaction, sintering) to the behaviour of materials elaborated from powders. Materials for energy applications (porous electrodes, nuclear pellets, MLCCs, thermoelectricity) represent typical applications. Discrete element simulations offer a natural and powerful tool for this research. A numerical tool, dp3D, specifically oriented toward materials science applications has been developed since 2001. Simulations are confronted to experimental observations, such as X-ray tomography.

Examples of application of the dp3D code are available here:

[legende-image]1383921690505[/legende-image]

Selected publications:

Yan Z, Martin CL, Guillon O, Bouvard D. Effect of size and homogeneity of rigid inclusions on the sintering of composites. Scr. Mater. 2013;69:327–30.

Pizette P, Martin CL, Delette G, Sans F, Geneves T. Green strength of binder-free ceramics. J. Eur. Ceram. Soc. 2013;33:975–84.

Yan Z, Guillon O, Martin CL, Wang S, Lee C-S, Bouvard D. In-situ synchrotron x-ray transmission microscopy of the sintering of multilayers. Appl. Phys. Lett. 2013;102:223107. 

Jauffrès D, Martin CL, Lichtner A, Bordia RK. Simulation of the toughness of partially sintered ceramics with realistic microstructures. Acta Mater. 2012;60:4685–94. 

Jauffrès D, Martin CL, Lichtner A, Bordia RK. Simulation of the elastic properties of porous ceramics with realistic microstructure. Model. Simul. Mater. Sci. Eng.2012;20:45009.

Liu X, Martin CL, Delette G, Laurencin J, Bouvard D, Delahaye T. Microstructure of porous composite electrodes generated by the discrete element method. J. Power Sources. 2011;196:2046–54.

Liu X, Martin CL, Delette G, Bouvard D. Elasticity and strength of partially sintered ceramics. J. Mech. Phys. Solids. 2010;58:829–42.

Olmos L, Takahashi T, Bouvard D, Martin CL, Salvo L, Bellet D, et al. Analysing the sintering of heterogeneous powder structures by in situ microtomography. Philos. Mag. 2009;89:2949–65.

Martin CL, Bordia RK. The effect of a substrate on the sintering of constrained films. Acta Mater.2009;57:549–58.

Martin CL, Bordia RK. Influence of adhesion and friction on the geometry of packings of spherical particles. Phys. Rev. E. 2008;77:31307.

Marmottant A, Salvo L, Martin CL, Mortensen A. Coordination measurements in compacted NaCl irregular powders using X-ray microtomography. J. Eur. Ceram. Soc. 2008;28:2441–9.

Schneider LCR, Martin CL, Bultel Y, Dessemond L, D.Bouvard. Percolation effects in functionally graded SOFC electrodes. Electrochim. Acta. 2007;52:3190–8.

Martin CL. Elasticity, fracture and yielding of cold compacted metal powders. J. Mech. Phys. Solids. 2004;52:1691–717.

Martin CL, Bouvard D. Study of the cold compaction of composite powders by the Discrete ElementMethod. Acta Mater. 2003;51:373–86.

Martin CL, Bouvard D, Shima S. Study of particle rearrangement during powder compaction by the Discrete Element Method. J. Mech. Phys. Solids. 2003;51:667–93.

 

Curriculum Vitæ

 

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentTélécharger au format PDFEnvoyer cette page par mail

Rédigé par Christophe Martin

mise à jour le 17 octobre 2014

Université de Grenoble