Contraintes résiduelles dans les céramiques SiC-Si-(B)

F. Rakotovao, G. Couégnat, G. Chollon

Laboratoire des Composites Thermostructuraux, Pessac http://www.lcts.u-bordeaux.fr/ chollon@lcts,u-bordeaux.fr

Le contexte: les moteurs aéronautiques

Les matériaux: les composites à matrice céramique SiC/SiC

Schéma d'un moteur LEAP

Composite SiC/SiC

Le procédé d'élaboration: infiltration de Si liquide (MI)

La problématique: évaluer les contraintes résiduelles

 $Procédé \ MI \rightarrow silicium \ résiduel$

Différence de CTE et de module entre SiC et Si Expansion volumique du Si à la solidification (9%vol)

Influence du comportement visqueux du Si (relaxation) ?

→ contraintes résiduelles ?

Les matériaux de l'étude: Si, SiC-Si, Si-B, SiC-Si-B

Si

Si-B

SiC-Si ou SiC-Si-B

Si 99,9999%, fondu en creuset graphite revêtu BN Si + B, id. (à T_{amb}: SiB₃)

SiC imprégné de Si ou Si-B (≈50% vol. de SiC)

Contrainte nulle

Contraintes résiduelles SiC vs Si?

Couches minces modèles et effet d'une trempe de SiC-Si

Couches minces PVD de Si pur recuit sur substrats plans: $\Delta \alpha \rightarrow$ contraintes thermiques ?

Trempe thermique: limite les déformations visqueuses du Si
→ contraintes résiduelles ↗ ?

Mesure des contraintes dans Si par spectroscopie Raman: principe

Si à σ = 0: structure diamant (O_h). A **q** ≈ 0: phonon triplement dégénéré: $\omega_i = \omega_0$

Si à $\sigma \neq 0$: distorsion de la maille \rightarrow levée de dégénérescence: $\omega_i \neq \omega_0$

$$\Delta \omega_i = \omega_i - \omega_0 = C.\sigma$$

C = f (matériau + config exp): - S_{ij} , potentiel de déformation du phonon: p, q, r- orientation du cristal, polarisation, état de contrainte Mesure des contraintes dans Si par spectroscopie Raman: exemples

Anastassakis ^a et al., De Wolf ^b...

Si monocristallin [001]: $\Delta \omega$ (cm⁻¹)= -2,3 ($\sigma_{11} + \sigma_{22}$) - 1,13 σ_{33} (σ_{ii} en GPa)

	<i>C (</i> cm ⁻¹ /GPa)	MPa/cm ⁻¹
Cont. uniaxiale	-2,3	-434
Cont. biaxiale	-4,6 / -4,25 d	-217 / -235 ^d
Cont. hydrostatique	-5,7 / -5,2 °	-174 / -192 ^c

Figure 4. $\Delta \omega$ (symbols) measured on nitride lines with different widths on Si substrate. The rectangles at the top indicate the position of the lines. See text for details.

^a E. Anastassakis, A. Cantarero, M. Cardona, *Phys Rev B* 41 (11) (1990) 7529-7535 ^b I. De Wolf, J. App. Phys. 118 (2015) 053101, Raman Spec. 15 (2) (2003) 6-13 ^c B. A. Weinstein, G. Piermarini, *Phys Rev B* 12 (4) (1975) 1172-1186 ^d M. Hecker, L. Zhu, C. Georgi et al. *AIP Conf. Proc.* 931 (2007) 435-444

Spectres Raman des différents échantillons: influence du bore

Fond continu + pic asymétrique \rightarrow effet Fano, qui croît avec λ et le taux de B (dopant p du Si)

Origine: interaction entre phonon (discret) et transition électronique interbande (continuum) ^a F. Cerdeira, T.A.Fjeldly, M. Cardona, *Phys Rev B* 8 (10) (1973) 4734-4745, *Phys Rev B* 9 (10) (1974) 4344-4350

Prise en compte de l'effet Fano

Paramétrage en position (ω_0), largeur (2 Γ), paramètre Fano (1/q) La déformation et le décalage du maximum augmentent avec 1/qEtalonnage en fréquence à l'aide d'une lampe Ne Ajustement des spectres à l'aide d'un code Python

Frittage SPS +THT 1300°C/1h

Cartographie Raman

Cartographie Raman + ajustement

Comparaison avec les données de la littérature

[1] M. Chandrasekar, H.R. Chandrasekar, M. Grimsditch, M. Cardona, Phys Rev B 22 (10) (1980) 4825-4833

[2] F. Cerdeira, T.A.Fjeldly, M. Cardona, Phys Rev B 8 (10) (1973) 4734-4745

[3] B.G. Burke, J. Chan, K.A. Williams et al., J. Raman Spec 41 (2010) 1759-1764

SIMS ΣB^+ .

Quantification du B par spectro Raman: littérature, SIMS, ICP-OES...

 $0 < \Gamma < 13 \text{ cm}^{-1}$ 0 < 1/q < 2 0 < [B] < 1% at.

[1] M. Chandrasekar, H.R. Chandrasekar, M. Grimsditch, M. Cardona, *Phys Rev B* 22 (10) (1980) 4825-4833 [2] F. Cerdeira, T.A.Fjeldly, M. Cardona, *Phys Rev B* 8 (10) (1973) 4734-4745

[3] B.G. Burke, J. Chan, K.A. Williams et al., J. Raman Spec 41 (2010) 1759-1764

Analyse des contraintes avec prise en compte du taux de B

 $\sigma = \frac{\omega - \omega_0(1/q)}{C}$

1 cm⁻¹ ≈ 200 MPa (biax./hydrostat.)

Courbe maitresse $\omega_0 = f(1/q)$ à contrainte nulle et [B] variable

Analyse des contraintes avec prise en compte du taux de B

Analyse des contraintes: couches PVD modèles et trempe de SiC-Si

Si-PVD: influence du substrat Si(001) \approx 0 MPa, SiC \approx -100 MPa, SiO₂ \approx +400MPa

SiC-Si: effet du B à considérer absolument ! ≈ -100MPa, pas d'effet de la trempe (hormis [B])

Contraintes locales dans SiC-Si: méthode FFT sur image binarisée

Micrographie MEB

Image segmentée

Anisotropie locale, isotrope en moyenne

Distribution des contraintes biaxiales dans SiC et Si: proche mesures Raman (visc. du Si ?)

Distribution des contraintes dans Si sur une zone moyennée de $1\mu m^2$: id. mes. Raman

Conclusion

Analyse des contraintes par Spectroscopie Raman

Possible pour certains matériaux (ex. Si), modérément précise (+/-20MPa), <u>locale</u> (≈1µm²) Dépend de l'état de contrainte (1D, 2D, 3D), de la structure et ici dans Si : <u>du taux de B</u> **Prise en compte du taux de B**

Calibrage $\omega_0 = f(1/q)$ à $\sigma = 0$ et [B] variable (c. de diffusion) \rightarrow dosage précis du B, $\sigma = [\omega - \omega_0(1/q)]/C$ Effet très sensible à faible [B] \rightarrow source d'erreur considérable!

Contraintes thermoélastiques à l'échelle micro (SiC-Si par FFT)

Niveaux et dispersion des contraintes cohérents avec les mesures Raman

Caractère visqueux du Si

Contraintes entièrement relaxées suite à $\Delta V_{\text{solidification}}$ (T \approx T_f)

<u>Peu d'effet sur σ ($\approx \sigma_{\text{thermoélast}}$)</u>: @HT: Si sensible à la relaxation, mais faible $\Delta T \rightarrow$ faibles ε et σ @BT: $\Delta T / \sigma$ élevés, mais pas de relaxation visqueuse