

5-6 Juin 2019

Apport de la méthode LASAT (choc laser) pour l'étude de systèmes revêtus métal/céramique en présence d'une couche d'oxyde

Vincent Guipont vincent.guipont@mines-paristech.fr

Coll: V.Maurel, C.Duhamel

Journées « Couplage Mécanique/Diffusion/Oxydation », UTC

Revêtements particulaires par projection

•APS

VPS

Projection Plasma CAPS

Heater

m

Modern Cold Spray: Materials, Process, and Applications," 2015, Springer

Powder feeder

CAPS enceinte multiprocédés (plasma, cold spray,...)

CGT - Kinetiks 3000

P: 0,5-3,0 Mpa/ Gaz: Azote, Hélium /T: 200-600° C **Buse De-Laval / Injection axiale**

Revêtements particulaires par projection

Combinaison des procédés

Dépôt particulaires état liquide ou vapeur

"Design" d'interfaces : cas des BT

(coll. S.Sampath, Stony Brook U.)

(fourni par Oerlikon Metco; Malko Gindrat)

Design d'interface: adhérence, tenue fissuration

PSL 🖈

Problématiques du design des interfaces

Comment améliorer les designs d'interface à notamment ceux relatifs aux nouveaux systèmes revêtus?

→Evaluer facilement, de manière robuste et répétable la tenue mécanique initiale de l'interface la plus faible et représentative de l'endommagement en service

→Contrôler l'évolution de cette tenue mécanique:

- sur échantillons en conditions de vieillissement
- sur pièce réelle, si possible de manière non destructive

Appréhender les modes d'endommagement prépondérant en relation avec les aspects morphologiques, physico-chimiques et mécaniques initiaux (macro/micro)

Aide à la prévision de durée de vie

LASAT (Laser Shock Adhesion Test)

Étude des interfaces de dépôts et mesure de l'adhérence par choc laser (LASAT)

- ~ GPa , ἐ >10⁴ s⁻¹
- No specific geometry
- No contact
- Local assessment
- Debonding threshold

Travaux amorcés en 2000 projet LASAT MNRT MINES (M. Jeandin)-ENSMA (M. Boustie)-ENSAM (L. Berthe)

Choc laser sur dépôts céramiques

→ Plasma (HAP, Alumine, YSZ), EB-PVD YSZ, Plasma DSY EBC
→ Adhérence par LASAT, t=0 et au cours du vieillissement
→Propagation de pré-fissures provoquées par choc laser

Méthode des courbes LASAT-2D

Position des courbes → comparaison directe de l'adhérence

LASAT-2D (Alumine plasma)

Seuil de rupture GW/cm² \rightarrow MPa (calculs onde de choc, calibration interférométrie VISAR)

PSL 🖈

COURBES LASAT-2D

Evolution du cloquage $\delta = f(\mathcal{O}_{fissure})$

LASAT sur BT EB-PVD + cyclage thermique

Après 500 cycles

PSL 🖈

EX: Ech. >500cycles (1100C/1H)

Adhérence augmente après 10 cycles (rupture au dessus TGO) puis décroit

Fissure interfaciale induite par choc laser

Après dépôt \rightarrow fissure dans la céramique

Mise en évidence de la zone de ténacité plus faible

Après cyclage \rightarrow fissure TGO/céramique

Analyse Ex situ du cloquage / cyclage thermique

Ech BT EB-PVD: LASAT à 0, 50, 100, 250 cycles à 1100C/1H

Analyse Ex situ du cloquage / cyclage thermique

- Buckling is activated while delamination is not: effect of "rumpling"?
- At N=300, delamination G=Gc

[Guipont, Fabre, Begue and Maurel, SCT under review]

16

PSL 🖈

LASAT-aided studies of coating's interface strength

