Aller au menu Aller au contenu
< >
Published on October 1, 2018
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentTélécharger au format PDFEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In Google+ Viadeo
October 1, 2018

Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis

Surface distortion

Surface distortion

Tuning the surface structure at the atomic level is of primary importance to simultaneously meet the electrocatalytic performance and stability criteria required for the development of low-temperature proton-exchange membrane fuel cells (PEMFCs). However, transposing the knowledge acquired on extended, model surfaces to practical nanomaterials remains highly challenging. Here, we propose ‘surface distortion’ as a novel structural descriptor, which is able to reconciliate and unify seemingly opposing notions and contradictory experimental observations in regards to the electrocatalytic oxygen reduction reaction (ORR) reactivity. Beyond its unifying character, we show that surface distortion is pivotal to rationalize the electrocatalytic properties of state-of-the-art of PtNi/C nanocatalysts with distinct atomic composition, size, shape and degree of surface defectiveness under a simulated PEMFC cathode environment. Our combined theoretical and experimental study brings fundamental and practical insights into the role of surface defects in electrocatalysis and highlights strategies to design more durable ORR nanocatalysts. This study has been selected to illustrated the front cover of Nature Materials volume published in July 2018.
 
surface distortion descriptor
 
Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis, R. Chattot, O. Le Bacq, V. Beermann, S. Kühl, J. Herranz, S. Henning, L. Kühn, T. Asset, L. Guétaz, G. Renou, J. Drnec, P. Bordet, A. Pasturel, A. Eychmüller, T.J. Schmidt, P. Strasser, L. Dubau and F. Maillard, Nature Materials, (2018); doi: 10.1038/s41563-018-0133-2

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentTélécharger au format PDFEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In Google+ Viadeo

Written by Muriel Braccini

Date of update October 1, 2018

Univ. Grenoble Alpes