Aller au menu Aller au contenu
Annuaire SIMaP

> Annuaire

M. JAUFFRES David

Assistant Professor Phelma/Grenoble-INP

Contact details

101 rue de la physique 38402 Saint Martin d'Heres cedex

  • Tél. : 04 76 82 63 37

Personal Website : http://

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In Google+ Viadeo

Teaching activities

Numerical Methods (BIOMED 2A)
Material and process selection (SIM 3A)
Materials science modelling projects (SIM3A)
Materials science practical works (SIM 2A)

Research activities

Research interest : Mechanics of materials - Discrete simulations - Multi-physics modeling - 3D image-based modeling - Architectured materials - Ceramic materials - Porous materials

Publication list : google scholar

Talks : figshare.com

PhD Students
2018 - ... G. Hamelin "Silica aerogel based thermal super-insulation panels: mechanical properties optimization"
2016 - ... N. Khamidy "Microstructure, durability and modelling of solid oxide cell materials"
2016 - ... K. Radi "Nacre-like alumina: from the proof of concept to the optimal microstructure"
2015 - 2018 E. Guesnet - "Modélisation du comportement mécanique et thermique des silices nano-architecturées"
2013 - 2016 O. Celikbilek - "An experimental and numerical approach for tuning the cathode for high performance IT-SOFC"


Recently published work
  • Why fumed and precipitated silica have different mechanical behavior: Contribution of discrete element simulations ​​​​​​​​​​​​​​
Typical simulation                           Scaling law​​​​​​​
Left: Typical simulation: compaction of a silica powder bed to VIP core density followed by a tensile test. Odoemetric modulus E0 and strength σf are extracted from the simulation to characterize the mechanical behavior of the silica core produced by the compaction stage. Right: Scaling law between oedometric modulus E0 and relative density d for precipitated (PS) and fumed (FS) silica. From E. Guesnet, et al.Journal of Non-Crystalline Solids, accepted (2019).

  • ​​​​​​​Elasticity and fracture of brick and mortar materials using discrete element simulations (Coll. LSFC)

DEM modeling of brick and mortar materials

Fracture behavior of a representative volume element of a bioinspired nacre-like material with brittle interfaces by DEM. Number of broken bonds per particles for the three cases of crack initiation and propagation. (a) Interface fracture initiation and propagation (b) Interface fracture initiation and tablet fracture propagation (c) Tablet fracture initiation and propagation.K. Radi et al., Journal of the Mechanics and Physic of Solids, 126 101–116 (2019).

  • A growth model for the generation of particle aggregates with tunable fractal dimension
Figure Porous Eden Growth

An original method is proposed to efficiently generate numerically aggregates with decreasing fractal dimension. E. Guesnet et al., Physica A: Statistical Mechanics and its Applications, 513 63–73 (2019).

 
  • Design of strain tolerant porous microstructures – A case for controlled imperfection (coll. R.Bordia, Clemson University)

Scaling laws for homogeneous porous microstructures obtained by partial sintering of ceramic powders.  (a) Scaling law for the relative Young's modulus. (b) Scaling law for the dimensionless fracture toughness. Z = coordination number; ab/R normalized neck size between particles. D. Jauffrès et al., Acta Materialia, 148 193–201 (2018).

 
  • Fast in-situ nanoimaging of particle sintering (coll. ESRF)

In situ X-ray nanotomography of glass particles sintering at 670°C. (a) 3D rendering of the investigated volume showing the growth of four segmented necks (I–IV). (b) Neck IV surface mesh displaying maximum principal curvature. (c) Neck radius versus time. a/R refers to the relative neck radius (neck radius: a, particle radius: R). The dashed vertical lines correspond to the 3D images in (a). (d) Comparison between experimental maximum principal curvature (symbols) and the tangent-circle approximation (dashed lines) as a function of the distance z from the neck plane. J. Villanova et al., Mat. Today 20, 354–359 (2017).


 

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In Google+ Viadeo

Date of update September 6, 2019

Univ. Grenoble Alpes