Aller au menu Aller au contenu
Annuaire SIMaP

> Annuaire

M. JAUFFRES David

photo_djauffres.jpg
Maître de Conférence Phelma/Grenoble-INP

Coordonnées

101 rue de la physique 38402 Saint Martin d'Heres cedex

  • Tél. : 04 76 82 63 37

Site internet : http://

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentTélécharger au format PDFEnvoyer cette page par mail

Teaching
Numerical Methods (BIOMED 2A)
Material and process selection (SIM 3A)
Materials science modelling projects (SIM3A)
Materials science practical works (SIM 2A)

Research interest : Mechanics of materials - Discrete simulations - Multi-physics modeling - 3D image-based modeling - Architectured materials - Ceramic materials - Porous materials

Publication list : google scholar

Talks : figshare.com

PhD Students
2016 - ... N. Khamidy "Microstructure, durability and modelling of solid oxide cell materials"
2016 - ... K. Radi "Nacre-like alumina: from the proof of concept to the
optimal microstructure"
2015 - ... E. Guesnet "Mechanical behavior of nanostructured silica based
insulation panels: discrete simulations"
2013 - 2016 O. Celikbilek - "Cathode optimization for Solide Oxyde Fuel Cells: experimental and numerical approaches"
 
Recently published work

  • Design of strain tolerant porous microstructures – A case for controlled imperfection

Scaling laws for homogeneous porous microstructures obtained by partial sintering of ceramic powders.  (a) Scaling law for the relative Young's modulus. (b) Scaling law for the dimensionless fracture toughness. Z = coordination number; ab/R normalized neck size between particles. Jauffrès, D. et al. Design of strain tolerant porous microstructures – A case for controlled imperfection Acta Mat. (2018).

  • Fast in-situ nanoimaging of particle sintering (coll. ESRF)
In situ X-ray nanotomography of glass particles sintering at 670°C. (a) 3D rendering of the investigated volume showing the growth of four segmented necks (I–IV). (b) Neck IV surface mesh displaying maximum principal curvature. (c) Neck radius versus time. a/R refers to the relative neck radius (neck radius: a, particle radius: R). The dashed vertical lines correspond to the 3D images in (a). (d) Comparison between experimental maximum principal curvature (symbols) and the tangent-circle approximation (dashed lines) as a function of the distance z from the neck plane.Villanova, J. et al. Fast in situ 3D nanoimaging: a new tool for dynamic characterization in materials science Mat. Today 20, 354–359 (2017).

  • Rational design of SOFC cathodes with hierarchical porosity (coll. LEPMI, O.Celikbilek PhD)
Rational design of SOFC electrodes with hierarchical porosity
(a) FIB-SEM tomography of cathodes films obtained by Electro Spray Deposition (top: LSCF film, bottom: 60:40 %vol LSCF:CGO film). (b) FEM model of a nanoporous column. The model accounts for oxygen surface exchange (at the column surface and in the nanopores) and for oxygen bulk diffusion. The model compares favorably with Electrochemical Impedance Spectroscopy measurements on the cathodes characterized by FIB-SEM tomography. (c) Design guidelines from the FEM model to tune the CGO and nanoporosity content (T=500°C / average nanopore size 60nm / 15% macroporosity). Experimentally, an Area Specific Resistance (ASR) of 0.35 ohm.cm² was achieved at 550°C by the 60:40 % LSCF:CGO film. Performance could be pushed further by increasing further the SOFC content but unfortunately such films lacked mechanical adhesion with electrolyte. Çelikbilek, Ӧ. et al. Rational Design of Hierarchically Nanostructured Electrodes for Solid Oxide Fuel Cells. J. Power Sources 333, 72–82 (2016).

  • Strength of hierarchically porous ceramics : X-ray nanotomography and discrete element simulations (coll. University of Washington, D.Roussel PhD & A.Lichtner PhD)

(a) SEM top view of a freeze-cast sample (plane perpendicular to the freeze-casting direction) showing colonies of pores aligned with one another. (b-d) Generation and utilization of a numerical microstructure obtained from a nanotomagraphy reconstruction with the discrete element method. (b) X-ray nanotomography of a freeze-cast sample (c) Discrete microstructure matched with the 3D image. (d) Simulation of a longitudinal crushing test showing the displacement of particles in the (x) direction, transverse to the loading axis (z). Roussel, D. et al. Strength of hierarchically porous ceramics : discrete simulations on X-ray nanotomography images. Scr. Mater. 113, 277–283 (2016).

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentTélécharger au format PDFEnvoyer cette page par mail

Rédigé par David Jauffres

mise à jour le 14 février 2018

Communauté Université Grenoble Alpes