Aller au menu Aller au contenu
Grenoble INP
Annuaire SIMaP

M. David Jauffres

Maître de Conférence Phelma/Grenoble-INP


SIMAP/GPM2 ENSE3 Site Ampère BP 46 38402 ST MARTIN D'HERES Cedex

Site internet : http://

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentTélécharger au format PDFEnvoyer cette page par mail

Numerical Methods (BIOMED 2A)
Material and process selection (SIM 3A)
Practicals microstructures, thermomechanical treatments and metal deformation behavior laws (SIM 2A)

Research interest : Mechanics of materials - Discrete simulations - Multi-physics modeling - 3D image-based modeling - Architectured materials - Ceramic materials - Porous materials

Publication list : google scholar

Talks :

Recent published work

Rational design of SOFC cathodes with hierarchical porosity (coll. LEPMI, O.Celikbilek PhD)
Rational design of SOFC electrodes with hierarchical porosity

(a) FIB-SEM tomography of cathodes films obtained by Electro Spray Deposition (top: LSCF film, bottom: 60:40 %vol LSCF:CGO film). (b) FEM model of a nanoporous column. The model accounts for oxygen surface exchange (at the column surface and in the nanopores) and for oxygen bulk diffusion. The model compares favorably with Electrochemical Impedance Spectroscopy measurements on the cathodes characterized by FIB-SEM tomography. (c) Design guidelines from the FEM model to tune the CGO and nanoporosity content (T=500°C / average nanopore size 60nm / 15% macroporosity). Experimentally, an Area Specific Resistance (ASR) of 0.35 ohm.cm² was achieved at 550°C by the 60:40 % LSCF:CGO film. Performance could be pushed further by increasing further the SOFC content but unfortunately such films lacked mechanical adhesion with electrolyte. Çelikbilek, Ӧzden et al. Rational Design of Hierarchically Nanostructured Electrodes for Solid Oxide Fuel Cells. J. Power Sources 333, 72–82 (2016).

Strength of hierarchically porous ceramics : X-ray nanotomography and discrete element simulations (coll. University of Washington, D.Roussel PhD & A.Lichtner PhD)

(a) SEM top view of a freeze-cast sample (plane perpendicular to the freeze-casting direction) showing colonies of pores aligned with one another. (b-d) Generation and utilization of a numerical microstructure obtained from a nanotomagraphy reconstruction with the discrete element method. (b) X-ray nanotomography of a freeze-cast sample (c) Discrete microstructure matched with the 3D image. (d) Simulation of a longitudinal crushing test showing the displacement of particles in the (x) direction, transverse to the loading axis (z). Roussel, D. et al. Strength of hierarchically porous ceramics : discrete simulations on X-ray nanotomography images. Scr. Mater. 113, 277–283 (2016).

Functional properties of LSM/YSZ porous SOFC cathodes by FIB-SEM tomography (coll. University of Washington, 
D.Roussel PhD & A.Lichtner PhD)

(a) 3D representations of the phase connectivities. (b) At the higher sintering temperature, the LSM increases its connectivity while the pore phases becomes markedly less connected. The YSZ phase is fully connected for both samples and appears to coarsen at the higher sintering temperature. Lichtner, A. Z. et al. Dispersion, connectivity and tortuosity of hierarchical porosity composite SOFC cathodes prepared by freeze-casting. J. Eur. Ceram. Soc. 35, 585–595 (2015).


Toughness of porous ceramics : discrete element simulation (
coll. University of Washington, Postdoctoral research) 

Evolution of the number of brocken bonds during a numerical tensile test of a pre-cracked plate. The sample shown has a relative density of 0.72. The top right image shows the localized damage occurring ahead of the crack-tip just before failure of the sample. Jauffres, D., Martin, C. L., Lichtner, A. & Bordia, R. K. Simulation of the toughness of partially sintered ceramics with realistic microstructures. Acta Mater. 60, 4685 (2012).

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentTélécharger au format PDFEnvoyer cette page par mail

Rédigé par David Jauffres

mise à jour le 26 avril 2017

Communauté Université Grenoble Alpes
Afin d'améliorer la qualité de ce site et le service rendu à l'utilisateur, nous utilisons des cookies de mesure d’audience. En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies à cette fin. Pour en savoir plus